Causal Learning From Predictive Modeling for Observational Data
نویسندگان
چکیده
منابع مشابه
Learning Deterministic Causal Networks from Observational Data
Previous work suggests that humans find it difficult to learn the structure of causal systems given observational data alone. We show that structure learning is successful when the causal systems in question are consistent with people’s expectations that causal relationships are deterministic and that each pattern of observations has a single underlying cause. Our data are well explained by a B...
متن کاملLearning Causal and Predictive Clinical Practice Guidelines from Data
Clinical practice guidelines (CPG) propose preventive, diagnostic and treatment strategies based on the best available evidence. CPG enable practice of evidencebased medicine and bring about standardization of healthcare delivery in a given hospital, region, country or the whole world. This study explores generation of guidelines from data using machine learning, causal discovery methods and th...
متن کاملCausal Methods for Observational Data
Comparative effectiveness research often uses non-experimental observational data (like hospital discharge records or nationally representative surveys) to draw causal inference about the effectiveness of interventions for health. These ex post inferences require the careful use of specialized statistical methods in order to account for issues like selection bias and unmeasured heterogeneity. T...
متن کاملCausal inference with observational data
Identifying the causal impact of some variables X on y is difficult in the best of circumstances, but faces seemingly insurmountable problems in observational data, where X is not manipulable by the researcher and cannot be randomly assigned. Nevertheless, estimating such an impact or “treatment effect” is the goal of much research, even much research that carefully states all findings in terms...
متن کاملCausal models and learning from data: integrating causal modeling and statistical estimation.
The practice of epidemiology requires asking causal questions. Formal frameworks for causal inference developed over the past decades have the potential to improve the rigor of this process. However, the appropriate role for formal causal thinking in applied epidemiology remains a matter of debate. We argue that a formal causal framework can help in designing a statistical analysis that comes a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Big Data
سال: 2020
ISSN: 2624-909X
DOI: 10.3389/fdata.2020.535976